(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
times,
div,
quot,
eq,
prThey will be analysed ascendingly in the following order:
plus < times
times < div
div = quot
(6) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
plus, times, div, quot, eq, pr
They will be analysed ascendingly in the following order:
plus < times
times < div
div = quot
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_s:0'3_0(
a),
gen_s:0'3_0(
n5_0)) →
gen_s:0'3_0(
+(
n5_0,
a)), rt ∈ Ω(1 + n5
0)
Induction Base:
plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) →RΩ(1)
gen_s:0'3_0(a)
Induction Step:
plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
s(plus(gen_s:0'3_0(a), p(s(gen_s:0'3_0(n5_0))))) →RΩ(1)
s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0))) →IH
s(gen_s:0'3_0(+(a, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
times, div, quot, eq, pr
They will be analysed ascendingly in the following order:
times < div
div = quot
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_s:0'3_0(
n854_0),
gen_s:0'3_0(
b)) →
gen_s:0'3_0(
*(
n854_0,
b)), rt ∈ Ω(1 + b·n854
02 + n854
0)
Induction Base:
times(gen_s:0'3_0(0), gen_s:0'3_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_s:0'3_0(+(n854_0, 1)), gen_s:0'3_0(b)) →RΩ(1)
plus(gen_s:0'3_0(b), times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b))) →IH
plus(gen_s:0'3_0(b), gen_s:0'3_0(*(c855_0, b))) →LΩ(1 + b·n8540)
gen_s:0'3_0(+(*(n854_0, b), b))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
eq, div, quot, pr
They will be analysed ascendingly in the following order:
div = quot
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_s:0'3_0(
n1961_0),
gen_s:0'3_0(
n1961_0)) →
true, rt ∈ Ω(1 + n1961
0)
Induction Base:
eq(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true
Induction Step:
eq(gen_s:0'3_0(+(n1961_0, 1)), gen_s:0'3_0(+(n1961_0, 1))) →RΩ(1)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
pr, div, quot
They will be analysed ascendingly in the following order:
div = quot
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol pr.
(17) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
quot, div
They will be analysed ascendingly in the following order:
div = quot
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
quot(
gen_s:0'3_0(
n2609_0),
gen_s:0'3_0(
+(
1,
n2609_0)),
gen_s:0'3_0(
c)) →
gen_s:0'3_0(
0), rt ∈ Ω(1 + n2609
0)
Induction Base:
quot(gen_s:0'3_0(0), gen_s:0'3_0(+(1, 0)), gen_s:0'3_0(c)) →RΩ(1)
0'
Induction Step:
quot(gen_s:0'3_0(+(n2609_0, 1)), gen_s:0'3_0(+(1, +(n2609_0, 1))), gen_s:0'3_0(c)) →RΩ(1)
quot(gen_s:0'3_0(n2609_0), gen_s:0'3_0(+(1, n2609_0)), gen_s:0'3_0(c)) →IH
gen_s:0'3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
quot(gen_s:0'3_0(n2609_0), gen_s:0'3_0(+(1, n2609_0)), gen_s:0'3_0(c)) → gen_s:0'3_0(0), rt ∈ Ω(1 + n26090)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
div
They will be analysed ascendingly in the following order:
div = quot
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(22) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
quot(gen_s:0'3_0(n2609_0), gen_s:0'3_0(+(1, n2609_0)), gen_s:0'3_0(c)) → gen_s:0'3_0(0), rt ∈ Ω(1 + n26090)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
(24) BOUNDS(n^3, INF)
(25) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
quot(gen_s:0'3_0(n2609_0), gen_s:0'3_0(+(1, n2609_0)), gen_s:0'3_0(c)) → gen_s:0'3_0(0), rt ∈ Ω(1 + n26090)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
(27) BOUNDS(n^3, INF)
(28) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
eq(gen_s:0'3_0(n1961_0), gen_s:0'3_0(n1961_0)) → true, rt ∈ Ω(1 + n19610)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
(30) BOUNDS(n^3, INF)
(31) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_s:0'3_0(n854_0), gen_s:0'3_0(b)) → gen_s:0'3_0(*(n854_0, b)), rt ∈ Ω(1 + b·n85402 + n8540)
(33) BOUNDS(n^3, INF)
(34) Obligation:
TRS:
Rules:
p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
Types:
p :: s:0' → s:0'
s :: s:0' → s:0'
plus :: s:0' → s:0' → s:0'
0' :: s:0'
times :: s:0' → s:0' → s:0'
div :: s:0' → s:0' → s:0'
quot :: s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
divides :: s:0' → s:0' → true:false
prime :: s:0' → true:false
pr :: s:0' → s:0' → true:false
if :: true:false → s:0' → s:0' → true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) → gen_s:0'3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
(36) BOUNDS(n^1, INF)